Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J. appl. oral sci ; 27: e20180126, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-975877

ABSTRACT

Abstract Objectives: The aim of this in vitro study was to evaluate the bonding strength of non-simplified dentin bonding systems (DBS) to dentin irradiated with a diode laser (970 nm) immediately and after 12 months of water storage following either primer or bond application. Material and methods: The experimental design included three different factors: DBS type [AdperTM Scotchbond Multipurpose (MP) and Clearfil™ SE Bond (CSE)], irradiation [without irradiation - control (C), irradiation after primer application (AP), and irradiation after bond application (AB)], and time [initial (I) and after 12 months of water storage (12 m)]. Sixty sound human third molars (n = 10) were obtained, and their flat occlusal dentin areas were prepared and standardized. Laser irradiation was performed in the contact mode perpendicular to the dental surface over an automatically selected scanning area at a pulse energy of 0.8 W, frequency of 10 Hz, and energy density of 66.67 J/cm2. After 7 days of treatment, the specimens were cut, and half of them were subjected to microtensile testing (500 N/0.05 mm/min), whereas the remaining sticks were examined after 12 months of water storage. The obtained data were analyzed by three-way analysis of variance (ANOVA) followed by a Tukey test (p<0.05). The observed fracture modes were investigated using a portable digital microscope with a magnification of 40x. Results: Among the utilized DBS, MP generally exhibited higher bond strengths, but did not always differ from CSE under similar conditions. The irradiation factor was statistically significant only for the MP/AB groups. After 12 months of storage, all groups demonstrated a significant reduction in the bond strength, whereas the results of fracture analysis showed a predominance of the adhesive type. Conclusions: The laser treatment of non-simplified DBS was not able to stabilize their bonding characteristics after 12 months.


Subject(s)
Humans , Dental Bonding/methods , Dentin-Bonding Agents/radiation effects , Resin Cements/radiation effects , Dentin/radiation effects , Lasers, Semiconductor , Reference Values , Surface Properties/radiation effects , Tensile Strength , Time Factors , Materials Testing , Water/chemistry , Reproducibility of Results , Analysis of Variance , Dentin-Bonding Agents/chemistry , Microscopy, Atomic Force , Resin Cements/chemistry , Dentin/drug effects , Polymerization/radiation effects
2.
Braz. oral res. (Online) ; 32: e97, 2018. tab, graf
Article in English | LILACS | ID: biblio-974445

ABSTRACT

Abstract The aim of this study was to investigate the influence of preheating and post-curing methods on diametral tensile strength (DTS), flexural strength (FS), knoop microhardness (KHN), and degree of conversion (DC) of an experimental fiber-reinforced composite (FRC). Specimens (30 wt% of 3-mm-short E-glass fiber, 22.5 wt% of methacrylated-based resin and 47.5 wt% of filler particles) were subjected to: P - photocuring at 1500 mW/cm2 for 40 s (control); P/M - photocuring and microwave post-curing (540W/5 minutes); P/A - photocuring and autoclave post-curing (120°C/15 minutes); PH-P - preheating (60°C) and photocuring; PH-P/M - preheating, photocuring and microwave post-curing; and PH-P/A - preheating, photocuring and autoclave post-curing. Specimens for DTS (Ø 3 x 6 mm) and FS (25 x 2 x 2 mm) were tested at Instron 5965. KHN employed a 50g load for 30s. DC was measured using FTIR spectroscopy. Statistical analysis employed: factorial analysis, normality test, one-way ANOVA and Tukey's HSD test, independent T-test and the Dunnett test. Interaction between factors was not significant (P>0.05). Preheating promoted significantly higher values of FS and KHN (p = 0.0001). Post-curing promoted significantly higher values for KHN (p = 0.0001). For DTS (p = 0.066) and DC (p= 0.724) no statistical difference was found between groups. SEM images showed that preheating promoted better interaction between glass fibers and resin matrix. Preheating increased FS, KHN and DTS, and post-curing increased KHN. DC was not affected by both methods. Preheating and post-curing methods can be used to improve some mechanical properties of FRCs' but degree of conversion remains unaffected.


Subject(s)
Composite Resins/chemistry , Light-Curing of Dental Adhesives/methods , Glass/chemistry , Hot Temperature , Reference Values , Surface Properties , Tensile Strength , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Analysis of Variance , Statistics, Nonparametric , Polymerization/radiation effects , Hardness Tests , Methacrylates/chemistry , Microwaves
3.
J. appl. oral sci ; 26: e20170528, 2018. tab, graf
Article in English | LILACS, BBO | ID: biblio-954505

ABSTRACT

Abstract High levels of shrinkage stress caused by volumetric variations during the activation process are one of the main problems in the practical application of composite resins. Objective The aim of this study is to reduce the shrinkage stress and minimize the effects caused by composite resin volumetric variation due to the photopolymerization. In this way, this work proposes a systematic study to determine the optimal dimming function to be applied to light curing processes. Material and Methods The study was performed by applying mathematical techniques to the optimization of nonlinear objective functions. The effectiveness of the dimming function was evaluated by monitoring the polymerization shrinkage stress during the curing process of five brands/models of composites. This monitoring was performed on a universal testing machine using two steel bases coupled in the arms of the machine where the resin was inserted and polymerized. The quality of the composites cured by the proposed method was analyzed and compared with the conventional photoactivation method by experiments to determine their degree of conversion (DC). Absorbance measurements were performed using Fourier-transform infrared spectroscopy (FT-IR). A T-test was performed on DC results to compare the photoactivation techniques. We also used scanning electron microscopy (SEM) to analyze in-vitro the adhesion interface of the resin in human teeth. Results Our results showed that the use of the optimal dimming function, named as exponential, resulted in the significant reduction of the shrinkage stress (~36.88% ±6.56 when compared with the conventional method) without affecting the DC (t=0.86, p-value=0.44). The SEM analyses show that the proposed process can minimize or even eliminate adhesion failures between the tooth and the resin in dental restorations. Conclusion The results from this study can promote the improvement of the composite resin light curing process by the minimization of polymerization shrinkage effects, given an operational standardization of the photoactivation process.


Subject(s)
Composite Resins/radiation effects , Composite Resins/chemistry , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Reference Values , Stress, Mechanical , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Adhesiveness , Spectroscopy, Fourier Transform Infrared , Dental Stress Analysis , Phase Transition/radiation effects
4.
J. appl. oral sci ; 26: e20160662, 2018. tab, graf
Article in English | LILACS, BBO | ID: biblio-893738

ABSTRACT

ABSTRACT Objective: The main goal of this study was to compare the polymerization degree of bulk-fill giomer resin cured with three different light-curing units (LCUs): a polywave third-generation (Valo); a monowave (DemiUltra: DU); and a second-generation LED (Optima 10: Opt) LCUs by using structural and mechanical properties. Material and methods: Giomer samples of 2 and 4 mm cured with three LCUs were employed in vitro analysis. The degree of curing (DC%) was determined with Fourier-Transform Infrared Spectroscopy (FTIR). Microstructural features were observed with scanning electron microscopy (SEM). Flexural strength (FS), compression strength (CS), elastic modulus and fracturing strain were determined for mechanical properties. Surface microhardness (SMH) values were also measured. Oneway ANOVA, two-way analysis of variance and Tukey multiple comparison tests were used for statistically analyzing the FS and SMH. Results: DC% values were 58.2, 47.6, and 39.7 for the 2 mm samples cured with DU, Opt., and Valo LCUs, respectively. DC% values of the 4 mm samples were 50.4, 44.6, and 38.2 for DU, Opt, and Valo, respectively. SMH values were Valo, Opt<DU at top of the samples; Valo<DU, Opt at 2 mm, and DU, Valo<Opt at 4 mm depth. Giomer samples cured with Opt and DU exhibited higher FS values than Valo. CS values were similar but compressive modulus and fracturing strain (%) varied depending on the curing protocol. Conclusions: Based on the results, it can be concluded that curing device and protocol strongly affect crosslinking reactions and thus DC%, SMH, compressive modulus and strain at break values. Consequently, it can be deduced that curing protocol is possibly the most important parameter for microstructure formation of highly-filled composite restoratives because it may bring some structural defects and physical frailties on restorations due to lower degree of polymerization.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/radiation effects , Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/radiation effects , Composite Resins/chemistry , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Reference Values , Surface Properties/radiation effects , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric , Compressive Strength , Elastic Modulus , Hardness Tests
5.
J. appl. oral sci ; 25(4): 381-386, July-Aug. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893641

ABSTRACT

Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.


Subject(s)
Dentin-Bonding Agents/radiation effects , Lasers, Semiconductor , Polymerization/radiation effects , Reference Values , Solubility/radiation effects , Surface Properties/radiation effects , Reproducibility of Results , Dentin-Bonding Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric , Dental Cements/radiation effects , Dental Cements/chemistry , Phase Transition/radiation effects , Light-Curing of Dental Adhesives/methods , Curing Lights, Dental , Photochemical Processes/radiation effects
6.
Braz. oral res. (Online) ; 31(supl.1): e61, Aug. 2017. graf
Article in English | LILACS | ID: biblio-889452

ABSTRACT

Abstract Contemporary dentistry literally cannot be performed without use of resin-based restorative materials. With the success of bonding resin materials to tooth structures, an even wider scope of clinical applications has arisen for these lines of products. Understanding of the basic events occurring in any dental polymerization mechanism, regardless of the mode of activating the process, will allow clinicians to both better appreciate the tremendous improvements that have been made over the years, and will also provide valuable information on differences among strategies manufacturers use to optimize product performance, as well as factors under the control of the clinician, whereby they can influence the long-term outcome of their restorative procedures.


Subject(s)
Curing Lights, Dental , Dental Cements/chemistry , Light-Curing of Dental Adhesives/instrumentation , Light-Curing of Dental Adhesives/methods , Photoinitiators, Dental/chemistry , Polymerization , Absorption, Radiation , Dental Cements/radiation effects , Dental Restoration, Permanent/instrumentation , Dental Restoration, Permanent/methods , Polymerization/radiation effects , Radiation Dosage , Temperature , Time Factors
7.
Braz. oral res. (Online) ; 31(supl.1): e59, Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-889456

ABSTRACT

Abstract This systematic review assessed the literature to evaluate the efficiency of polymerization of bulk-fill composite resins at 4 mm restoration depth. PubMed, Cochrane, Scopus and Web of Science databases were searched with no restrictions on year, publication status, or article's language. Selection criteria included studies that evaluated bulk-fill composite resin when inserted in a minimum thickness of 4 mm, followed by curing according to the manufacturers' instructions; presented sound statistical data; and comparison with a control group and/or a reference measurement of quality of polymerization. The evidence level was evaluated by qualitative scoring system and classified as high-, moderate- and low- evidence level. A total of 534 articles were retrieved in the initial search. After the review process, only 10 full-text articles met the inclusion criteria. Most articles included (80%) were classified as high evidence level. Among several techniques, microhardness was the most frequently method performed by the studies included in this systematic review. Irrespective to the "in vitro" method performed, bulk fill RBCs were partially likely to fulfill the important requirement regarding properly curing in 4 mm of cavity depth measured by depth of cure and / or degree of conversion. In general, low viscosities BFCs performed better regarding polymerization efficiency compared to the high viscosities BFCs.


Subject(s)
Composite Resins/chemistry , Polymerization , Composite Resins/radiation effects , Curing Lights, Dental , Hardness , Materials Testing , Polymerization/radiation effects , Radiation Dosage , Time Factors
8.
J. appl. oral sci ; 25(2): 140-146, Mar.-Apr. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-841182

ABSTRACT

Abstract Alternative photoinitiators with different absorption wavelengths have been used in resin composites (RCs), so it is crucial to evaluate the effectiveness of light-curing units (LCUs) on these products. Objective Using Fourier transform infrared analysis (FTIR) in vitro, the effects of varying radiant exposure (RE) values generated by second and third generation LED LCUs on the degree of conversion (DC) and maximum rate of polymerization (Rpmax) of an experimental Lucirin TPO-based RC were evaluated. Material and Methods 1 mm or 2 mm thick silicon molds were positioned on a horizontal attenuated total reflectance (ATR) unit attached to an infrared spectroscope. The RC was inserted into the molds and exposed to varying REs (18, 36 and 56 J/cm2) using second (Radii Plus, SDI) and third generation LED LCUs (Bluephase G2/Ivoclar Vivadent) or a quartz tungsten based LCU (Optilux 501/SDS Kerr). FTIR spectra (n=7) were recorded for 10 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm-1) immediately after their application to the ATR. The DC was calculated using standard techniques for observing changes in aliphatic to aromatic peak ratios both prior to, and 10 min after curing, as well as during each 1 second interval. DC and Rpmax data were analyzed using 3-way ANOVA and Tukey’s post-hoc test (p=0.05). Results No significant difference in DC or Rpmax was observed between the 1 mm or 2 mm thick specimens when RE values were delivered by Optilux 501 or when the 1 mm thick composites were exposed to light emitted by Bluephase G2, which in turn promoted a lower DC when 18 J/cm2 (13 s) were delivered to the 2 mm thick specimens. Radii Plus promoted DC and Rpmax values close to zero under most conditions, while the delivery of 56 J/cm2 (40 s) resulted in low DC values. Conclusions The third generation LCU provided an optimal polymerization of Lucirin TPO-based RC under most tested conditions, whereas the second generation LED-curing unit was useless regardless of the RE.


Subject(s)
Phosphines/radiation effects , Composite Resins/radiation effects , Light-Curing of Dental Adhesives/methods , Curing Lights, Dental , Radiation Dosage , Reference Values , Time Factors , Materials Testing , Reproducibility of Results , Analysis of Variance , Spectroscopy, Fourier Transform Infrared , Phase Transition , Photoinitiators, Dental/chemistry , Polymerization/radiation effects
9.
Braz. oral res. (Online) ; 29(1): 1-7, 2015. tab, ilus
Article in English | LILACS | ID: lil-777230

ABSTRACT

The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm2 of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey’s tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm2 (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm2 at all curing distances.


Subject(s)
Curing Lights, Dental , Composite Resins/radiation effects , Light-Curing of Dental Adhesives/instrumentation , Light-Curing of Dental Adhesives/methods , Analysis of Variance , Composite Resins/chemistry , Dental Equipment , Materials Testing , Polymerization/radiation effects , Radiation Dosage , Radiation Equipment and Supplies , Reference Values , Reproducibility of Results , Statistics, Nonparametric , Time Factors
10.
J. appl. oral sci ; 22(1): 44-51, Jan-Feb/2014. tab, graf
Article in English | LILACS, BBO | ID: lil-699917

ABSTRACT

Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN) of dual-cured core build-up resin composites (DCBRCs) at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE]) were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2)at the top surface by irradiation for 20 seconds (20 s), 40 seconds (40 s), bonding agent plus 20 seconds (B+20 s), or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s). KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p<0.05. Results: For both DCBRCs, at 0.5 hours post-irradiation, the 20 s and 40 s methods showed the highest KHN at depth of 0.5 mm. The 40 s method showed significantly higher KHN than the 20 s method at all depths of cavity and post-irradiation times, except UCE at depth of 0.5 mm (p<0.05). The 120 s method did not result in significantly different KHN at all depths of cavity and post-irradiation times (p>0.05). In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05). Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity. .


Subject(s)
Composite Resins/radiation effects , Hardness Tests , Light-Curing of Dental Adhesives/methods , Resin Cements/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Photochemical Processes/radiation effects , Polymerization/radiation effects , Reproducibility of Results , Resin Cements/chemistry , Surface Properties/radiation effects , Time Factors
11.
Full dent. sci ; 4(16): 509-516, out. 2013. ilus
Article in Portuguese | LILACS, BBO | ID: lil-695721

ABSTRACT

A utilização de resinas com baixo módulo de elasticidade permite a confecção de uma camada que diminui as tensões geradas pela tensão de contração, pois têm a capacidade de deformação elástica. Geralmente, as resinas fluidas podem contrair até 6%. O caso clínico ilustrado relata a utilização de uma resina fluida que possibilita espessura de até 4 milímetros, com baixa contração e tensão de polimerização.


The use of resins with low elastic modulus allows the preparation of a layer that reduces the tensions caused by shrinkage stress due to its elastic deformation. Normally, fluid resins can shrink until 6%. The illustrated case reports the use of a fluid resin that allows up to 4mm thickness, with low shrinkage and polymerization tension.


Subject(s)
Humans , Polymerization/radiation effects , Radiography, Dental/methods , Radiography, Dental , Composite Resins/therapeutic use
12.
J. appl. oral sci ; 21(4): 293-299, Jul-Aug/2013. tab, graf
Article in English | LILACS | ID: lil-684563

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA) was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea) using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden) for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity. .


Subject(s)
Curing Lights, Dental , Composite Resins/radiation effects , Hot Temperature , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Surface Properties , Time Factors
13.
J. appl. oral sci ; 21(2): 157-162, Mar-Apr/2013. graf
Article in English | LILACS | ID: lil-674357

ABSTRACT

Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm) were prepared using a commercial composite resin (ICE, SDI). Three temperatures (10°C, 25°C and 60°C) and five curing times (5 s, 10 s, 20 s, 40 s and 60 s) were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1); B: 7 days after storage (M2); C: 7 days after storage plus 1 day of drying (M3). The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%). Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p<0.05). At 60°C, the composite sorption showed an inverse relationship with the curing time (p<0.05). The composite cured for 5 s showed higher sorption for the 40 s or 60 s curing times when compared with all temperatures (p<0.05). Curing times of 20 s and 40 s showed similar sorption data for all temperatures (p>0.05). The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p<0.05). The same results were found when comparing 10°C and 25°C (p<0.05), except that the 20 s and 40 s curing times behaved similarly (p>0.05). Solubility was similar at 40 s and 60 s for all temperatures (p>0.05), but was higher at 10°C than at 60°C for all curing times (p<0.05). When the composite was cured at 25°C, similar solubility values were found when comparing the 5 s and 10 s or 20 s and 40 s curing times (p>0.05). Conclusion: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.


Subject(s)
Curing Lights, Dental , Composite Resins/chemistry , Polymerization/radiation effects , Absorption , Adsorption , Composite Resins/radiation effects , Materials Testing , Reference Values , Solubility , Statistics, Nonparametric , Surface Properties , Temperature , Time Factors
14.
J. appl. oral sci ; 21(2): 190-195, Mar-Apr/2013. tab, graf
Article in English | LILACS | ID: lil-674365

ABSTRACT

Objective: This study evaluated the variation of conversion degree (DC) in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond). Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR) F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0), 30 minutes (P=0.5) and 12 hours after photoactivation (P=12) in order to obtain the DC progression during the post-curing period. Interactions between thickness (T), irradiation time (I) and post-curing (P) on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC) with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers.


Subject(s)
Humans , Curing Lights, Dental , Composite Resins/radiation effects , Nanocomposites/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Nanocomposites/chemistry , Phase Transition , Polymerization/radiation effects , Spectroscopy, Fourier Transform Infrared , Surface Properties , Time Factors
15.
J. appl. oral sci ; 20(6): 603-606, Nov.-Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-660629

ABSTRACT

OBJECTIVES: This study evaluated the influence of the cavity configuration factor ("C-Factor") and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer). MATERIAL AND METHODS: Three different pairs of steel moving bases were connected to a universal testing machine (emic DL 500): groups A and B - 2x2 mm (CF=0.33), groups C and D - 3x2 mm (CF=0.66), groups e and F - 6x2 mm (CF=1.5). After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm³ in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm² for 5 s, 40 s interval, 600 mW/cm² for 20 s) and continuous pulse (600 mW/cm² for 20 s). Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N) x Time(s)) and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05). RESULTS: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. CONCLUSIONS: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/radiation effects , Curing Lights, Dental , Composite Resins/radiation effects , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Dental Stress Analysis , Materials Testing , Reference Values , Time Factors
16.
J. appl. oral sci ; 20(2): 246-252, Mar.-Apr. 2012. tab
Article in English | LILACS | ID: lil-626429

ABSTRACT

Adequate polymerization plays an important role on the longevity of the composite resin restorations. OBJECTIVES: The aim of this study was to evaluate the effect of light-curing units, curing mode techniques and storage media on sorption, solubility and biaxial flexural strength (BFS) of a composite resin. MATERIAL AND METHODS: Two hundred and forty specimens were made of one composite resin (Esthet-X) in a stainless steel mold (2 mm x 8 mm Ø), and divided into 24 groups (n=10) established according to the 4 study factors: light-curing units: quartz tungsten halogen (QTH) lamp and light-emitting diodes (LED); energy densities: 16 J/cm² and 20 J/cm²; curing modes: conventional (CM) and pulse-delay (PD); and permeants: deionized water and 75% ethanol for 28 days. Sorption and solubility tests were performed according to ISO 4049:2000 specifications. All specimens were then tested for BFS according to ASTM F394-78 specification. Data were analyzed by three-way ANOVA followed by Tukey, Kruskal-Wallis and Mann-Whitney tests (α=0.05). RESULTS: In general, no significant differences were found regarding sorption, solubility or BFS means for the light-curing units and curing modes (p>0.05). Only LED unit using 16 J/cm² and PD using 10 s produced higher sorption and solubility values than QTH. Otherwise, using CM (16 J/cm²), LED produced lower values of BFS than QTH (p<0.05). 75% ethanol permeant produced higher values of sorption and solubility and lower values of BFS than water (p<0.05). CONCLUSION: Ethanol storage media produced more damage on composite resin than water. In general the LED and QTH curing units using 16 and 20 J/cm² by CM and PD curing modes produced no influence on the sorption, solubility or BFS of the tested resin.


Subject(s)
Humans , Curing Lights, Dental , Composite Resins/radiation effects , Light-Curing of Dental Adhesives/methods , Absorption , Analysis of Variance , Composite Resins/chemistry , Ethanol/chemistry , Materials Testing , Polymerization/radiation effects , Solubility , Statistics, Nonparametric , Tensile Strength , Time Factors , Water/chemistry
17.
J. appl. oral sci ; 19(4): 403-412, July-Aug. 2011. ilus, tab
Article in English | LILACS | ID: lil-599766

ABSTRACT

OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter) were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem). Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes), light-emitting diode (standard and exponential modes) and plasma arc (normal and ramp-curing modes) curing units through ceramic discs. Then the samples (n=8/per group) were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV). For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days) and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5 percent significance level. RESULTS: Resin cement and light-curing unit had significant effects (p<0.05) on microhardness, diametral tensile strength, water solubility and sorption. However, no significant differences (p>0.05) were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.


Subject(s)
Ceramics/radiation effects , Light-Curing of Dental Adhesives/methods , Polymerization/radiation effects , Resin Cements/radiation effects , Ceramics/chemistry , Composite Resins/chemistry , Hardness Tests , Materials Testing , Solubility , Surface Properties , Tensile Strength , Time Factors
18.
Rev. cuba. estomatol ; 48(2): 147-155, abr.-un. 2011.
Article in Spanish | LILACS, CUMED | ID: lil-615110

ABSTRACT

La polimerización con microondas es una nueva forma de llevar a cabo la confección de prótesis oculares individuales, sin embargo son aún insuficientes los estudios que exploren la eficiencia de este método. Se realizó una investigación para determinar el efecto de la polimerización con microondas en la eficiencia de la rehabilitación por prótesis oculares individuales. Se llevó a cabo un estudio de evaluación económica del tipo minimización de costos. Se comparó la polimerización tradicional simplificada con la polimerización por el método de microondas. Se consideraron para la efectividad el monómero residual, la deflexión transversal, la contracción lineal, la porosidad, la estabilidad del color, la resistencia al impacto, la dureza, la absorción de agua y la resistencia transversal. Se calcularon los costos médicos directos sobre la base de un modelo teórico para un paciente que requirió una prótesis ocular individual en el año 2006. Se documentó la igualdad de efectividad entre ambos métodos de polimerización. El costo teórico para un paciente que requirió una prótesis ocular individual fue de $ 79,85 USD y $ 70,07 USD por los métodos tradicionales y por microondas respectivamente. El método de polimerización con microondas ahorró en consumo de energía eléctrica y favoreció una mayor productividad de los recursos humanos, a la vez que incrementó la eficiencia(AU)


Microwaves polymerization is a new method to design individual ocular prostheses; however, there is a lack of studies exploring the effectiveness of present method to determine the effect of the microwaves polymerization in relation to effectiveness of individual ocular prostheses rehabilitation. An economic evaluation study was conducted to minimize costs. The simplified traditional polymerization was compared with microwaves polymerization method. For residual monomer the effectiveness transverse deflection, linear contraction, porosity, color stability, impaction resistance, hardness, water absorption and transverse resistance were took into account. The direct medical costs were estimated on the base of a theoretical model for a patient required an individual ocular prosthesis expressed in currency of 2006. Equality effectiveness of both polymerization methods was documented. Theoretical cost for a patient required an individual ocular prosthesis was of $ 79,85 USD and of $ 70,07 USD for the traditional and microwaves methods, respectively. The microwave polymerization method saves electric power consumption and favors a greater productivity of human resources while to increase the effectiveness(AU)


Subject(s)
Humans , Rehabilitation/methods , Eye, Artificial/adverse effects , Polymerization/radiation effects , Microwaves/therapeutic use , Health Care Costs
19.
Braz. oral res ; 25(2): 135-142, Mar.-Apr. 2011. ilus, tab
Article in English | LILACS | ID: lil-583859

ABSTRACT

The aim of this study was to evaluate the depth of curing of 10 contemporary blue light-activated dental flowable materials at several opacities, influenced by different irradiation times using FT-IR spectroscopy. Fifty-five specimens (n = 5) with a 5-mm diameter and 1-mm thickness of translucent (Opallis Flow T), yellowed (Master Flow A2; Opallis Flow A2; Natural Flow A2; Fluroshield Yellowed), and opaque materials (Master Flow OA2; Natural Flow O; Opallis Flow OA3.5; Opallis Flow OP; Fluroshield White) were obtained at six curing times (10s, 20s, 30s, 40s, 50s, and 60s) using a high-intensity LED (Coltolux, Coltène/Whaledent). The degree of conversion (DC) ( percent) was obtained using the Nexus 470 FTIR Spectrometer (Nicolet Instruments, USA). The FTIR-ATR spectra for uncured and cured samples were analyzed using a ZnSe crystal. The top and bottom surfaces of the cured specimens were analyzed to obtain the depth of curing. Two-way ANOVA was used to analyze the data. The highest curing depth was obtained by Natural Flow OA2, while the lowest was shown by Master Flow OA2. The shortest curing time generated similar depths of cure in comparison with the most extensive for Opallis Flow A2 and Fluroshield Yellowed. Therefore, depth of curing, influenced by the irradiation time, was dependent on the materials. Using the Natural Flow OA2 opaque sealant and the 10-s curing time for Opallis Flow A2 and Fluroshield Yellowed may represent alternative approaches to sealing tooth fissures.


Subject(s)
Humans , Composite Resins/radiation effects , Pit and Fissure Sealants/radiation effects , Polymerization/radiation effects , Analysis of Variance , Composite Resins/chemistry , Light-Curing of Dental Adhesives/methods , Materials Testing , Pit and Fissure Sealants/chemistry , Radiation Dosage , Spectroscopy, Fourier Transform Infrared , Surface Properties/radiation effects , Time Factors
20.
J. appl. oral sci ; 19(1): 22-27, Jan.-Feb. 2011. ilus, tab
Article in English | LILACS | ID: lil-578743

ABSTRACT

OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR) on hardness (KHN) of dual-cured resin cements (RCs), immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent), Rely X ARC (3M ESPE), and Panavia F (Kuraray Medical Inc.). The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter). The RC light-activation (Optilux 501; Demetron Kerr) was performed through a glass slide for 120 s (control group), or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent). The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5 percent). RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.


Subject(s)
Ceramics/radiation effects , Light-Curing of Dental Adhesives/methods , Resin Cements/radiation effects , Self-Curing of Dental Resins/methods , Analysis of Variance , Bisphenol A-Glycidyl Methacrylate/chemistry , Bisphenol A-Glycidyl Methacrylate/radiation effects , Ceramics/chemistry , Hardness Tests , Materials Testing , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymerization/radiation effects , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/radiation effects , Resin Cements/chemistry , Surface Properties/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL